CS 6110 Lecture 7 Well - Founded Induction 6 February 2013 Lecturer :

نویسنده

  • Andrew Myers
چکیده

Recall that some of the substitution rules mentioned the function FV : {λ-terms} → Var: FV(x) = {x} FV(e1 e2) = FV(e1) ∪ FV(e2) FV(λx. e) = FV(e)− {x}. Why does this definition uniquely determine the function FV? There are two issues here: • Existence: whether FV is defined on all λ-terms; • Uniqueness: whether the definition is unique. Of relevance here is the fact that there are three clauses in the definition of FV corresponding to the three clauses in the definition of λ-terms and that a λ-term can be formed in one and only one way by one of these three clauses. Note also that although the symbol FV occurs on the right-hand side in two of these three clauses, they are applied to proper (proper = strictly smaller) subterms. The idea underlying this definition is called structural induction. This is an instance of a general induction principle called induction on a well-founded relation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CS 6110 Lecture 7 Well - Founded Induction 9 February 2009

Recall that some of the substitution rules mentioned the function FV : {λ-terms} → Var: FV(x) = {x} FV(e1 e2) = FV(e1) ∪ FV(e2) FV(λx. e) = FV(e)− {x}. Why does this definition uniquely determine the function FV? There are two issues here: • Existence: whether FV is defined on all λ-terms; • Uniqueness: whether the definition is unique. Of relevance here is the fact that there are three clauses...

متن کامل

CS 6110 Lecture 36 A Monadic Approach to

It is also possible to define monads in terms of two other operations, map : (D → E) → M(D) → M(E) and join : M(M(D))→M(D). This is often the approach taken in category theory, but the definitions are equivalent. We use the notation [σ] to denote unit(σ), and the notation f∗(m) to denote bind(f)(m). Monads figure heavily in the programming language Haskell, which uses monads as a way to introdu...

متن کامل

Axiomatic Set Theory

Lecture 1, 07.03.: We made a review of the material covered in Chapter I of [3], up to Theorem I.9.11 (Transfinite Recursion on Well-founded Relations). Lecture 2, 14.03.: We discussed the notion of a rank, as well as the Mostowski collapsing function material corresponding to Section 9 of [3]. Lecture 3, 04.04.: We discussed hereditarily transitive sets, the DownwardLöwenheim-Skolem-Tarksi The...

متن کامل

Math 140a: Foundations of Real Analysis I

1. Ordered Sets, Ordered Fields, and Completeness 1 1.1. Lecture 1: January 5, 2016 1 1.2. Lecture 2: January 7, 2016 4 1.3. Lecture 3: January 11, 2016 7 1.4. Lecture 4: January 14, 2014 9 2. Sequences and Limits 13 2.1. Lecture 5: January 19, 2016 13 2.2. Lecture 6: January 21, 2016 15 2.3. Lecture 7: January 26, 2016 18 2.4. Lecture 8: January 28, 2016 21 3. Extensions of R: the Extended Rea...

متن کامل

CS 2429 - Foundations of Communication Complexity Lecture # 8 : 7 November 2012 Lecturer : Lila Fontes

Today we’ll cover some recent results from the paper Lower bounds on information complexity via zero-communication bounds and applications by Kerenidis, Laplante, Lerays, Roland, and Xiao (FOCS 2012). We’ll also recall results covered in past lectures from the papers The partition bound for classical communication complexity and query complexity by Jain and Klauck (CCC 2010) and How to compress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013